
INTRODUCTION TO FLUID DYNAMICS AND ITS BIOLOGICAL AND MEDICAL APPLICATIONS

12.3 The Most General Applications of Bernoulli’s Equation

• Calculate using Torricelli’s theorem.
• Calculate power in fluid flow.

12.4 Viscosity and Laminar Flow; Poiseuille’s Law

• Define laminar flow and turbulent flow.
• Explain what viscosity is.
• Calculate flow and resistance with Poiseuille’s law.
• Explain how pressure drops due to resistance.

12.5 The Onset of Turbulence

• Calculate Reynolds number.
• Use the Reynolds number for a system to determine whether it is laminar or turbulent.

12.6 Motion of an Object in a Viscous Fluid

• Calculate the Reynolds number for an object moving through a fluid.
• Explain whether the Reynolds number indicates laminar or turbulent flow.
• Describe the conditions under which an object has a terminal speed.

12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

• Define diffusion, osmosis, dialysis, and active transport.
• Calculate diffusion rates.

We have dealt with many
situations in which fluids are static. But by their very definition, fluids flow. Examples come easily—a column of smoke rises
from a camp fire, water streams from a fire hose, blood courses through your veins. Why does rising smoke curl and twist? How
does a nozzle increase the speed of water emerging from a hose? How does the body regulate blood flow? The physics of fluids in
motion—fluid dynamics—allows us to answer these and many other questions.

Click to view content (https://www.youtube.com/embed/GuFHfQlgI1I)

12.1 Flow Rate and Its Relation to Velocity
Flow rate is defined to be the volume of fluid passing by some location through an area during a period of time, as seen in
Figure 12.2. In symbols, this can be written as

where is the volume and is the elapsed time.

The SI unit for flow rate is , but a number of other units for are in common use. For example, the heart of a resting adult
pumps blood at a rate of 5.00 liters per minute (L/min). Note that a liter (L) is 1/1000 of a cubic meter or 1000 cubic centimeters (

or ). In this text we shall use whatever metric units are most convenient for a given situation.

Figure 12.2 Flow rate is the volume of fluid per unit time flowing past a point through the area . Here the shaded cylinder of fluid flows
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past point in a uniform pipe in time . The volume of the cylinder is and the average velocity is so that the flow rate is

.

EXAMPLE 12.1

Calculating Volume from Flow Rate: The Heart Pumps a Lot of Blood in a Lifetime
How many cubic meters of blood does the heart pump in a 75-year lifetime, assuming the average flow rate is 5.00 L/min?

Strategy

Time and flow rate are given, and so the volume can be calculated from the definition of flow rate.

Solution

Solving for volume gives

Substituting known values yields

Discussion

This amount is about 200,000 tons of blood. For comparison, this value is equivalent to about 200 times the volume of water
contained in a 6-lane 50-m lap pool.

Flow rate and velocity are related, but quite different, physical quantities. To make the distinction clear, think about the flow
rate of a river. The greater the velocity of the water, the greater the flow rate of the river. But flow rate also depends on the size of
the river. A rapid mountain stream carries far less water than the Amazon River in Brazil, for example. The precise relationship
between flow rate and velocity is

where is the cross-sectional area and is the average velocity. This equation seems logical enough. The relationship tells us
that flow rate is directly proportional to both the magnitude of the average velocity (hereafter referred to as the speed) and the
size of a river, pipe, or other conduit. The larger the conduit, the greater its cross-sectional area. Figure 12.2 illustrates how this
relationship is obtained. The shaded cylinder has a volume

which flows past the point in a time . Dividing both sides of this relationship by gives

We note that and the average speed is . Thus the equation becomes .

Figure 12.3 shows an incompressible fluid flowing along a pipe of decreasing radius. Because the fluid is incompressible, the
same amount of fluid must flow past any point in the tube in a given time to ensure continuity of flow. In this case, because the
cross-sectional area of the pipe decreases, the velocity must necessarily increase. This logic can be extended to say that the flow
rate must be the same at all points along the pipe. In particular, for points 1 and 2,

This is called the equation of continuity and is valid for any incompressible fluid. The consequences of the equation of continuity
can be observed when water flows from a hose into a narrow spray nozzle: it emerges with a large speed—that is the purpose of
the nozzle. Conversely, when a river empties into one end of a reservoir, the water slows considerably, perhaps picking up speed
again when it leaves the other end of the reservoir. In other words, speed increases when cross-sectional area decreases, and
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speed decreases when cross-sectional area increases.

Figure 12.3 When a tube narrows, the same volume occupies a greater length. For the same volume to pass points 1 and 2 in a given time,

the speed must be greater at point 2. The process is exactly reversible. If the fluid flows in the opposite direction, its speed will decrease

when the tube widens. (Note that the relative volumes of the two cylinders and the corresponding velocity vector arrows are not drawn to

scale.)

Since liquids are essentially incompressible, the equation of continuity is valid for all liquids. However, gases are compressible,
and so the equation must be applied with caution to gases if they are subjected to compression or expansion.

EXAMPLE 12.2

Calculating Fluid Speed: Speed Increases When a Tube Narrows
A nozzle with a radius of 0.250 cm is attached to a garden hose with a radius of 0.900 cm. The flow rate through hose and nozzle
is 0.500 L/s. Calculate the speed of the water (a) in the hose and (b) in the nozzle.

Strategy

We can use the relationship between flow rate and speed to find both velocities. We will use the subscript 1 for the hose and 2 for
the nozzle.

Solution for (a)

First, we solve for and note that the cross-sectional area is , yielding

Substituting known values and making appropriate unit conversions yields

Solution for (b)

We could repeat this calculation to find the speed in the nozzle , but we will use the equation of continuity to give a somewhat
different insight. Using the equation which states

solving for and substituting for the cross-sectional area yields

Substituting known values,
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Discussion

A speed of 1.96 m/s is about right for water emerging from a nozzleless hose. The nozzle produces a considerably faster stream
merely by constricting the flow to a narrower tube.

The solution to the last part of the example shows that speed is inversely proportional to the square of the radius of the tube,
making for large effects when radius varies. We can blow out a candle at quite a distance, for example, by pursing our lips,
whereas blowing on a candle with our mouth wide open is quite ineffective.

In many situations, including in the cardiovascular system, branching of the flow occurs. The blood is pumped from the heart
into arteries that subdivide into smaller arteries (arterioles) which branch into very fine vessels called capillaries. In this
situation, continuity of flow is maintained but it is the sum of the flow rates in each of the branches in any portion along the
tube that is maintained. The equation of continuity in a more general form becomes

where and are the number of branches in each of the sections along the tube.

EXAMPLE 12.3

Calculating Flow Speed and Vessel Diameter: Branching in the Cardiovascular System
The aorta is the principal blood vessel through which blood leaves the heart in order to circulate around the body. (a) Calculate
the average speed of the blood in the aorta if the flow rate is 5.0 L/min. The aorta has a radius of 10 mm. (b) Blood also flows
through smaller blood vessels known as capillaries. When the rate of blood flow in the aorta is 5.0 L/min, the speed of blood in
the capillaries is about 0.33 mm/s. Given that the average diameter of a capillary is , calculate the number of capillaries
in the blood circulatory system.

Strategy

We can use to calculate the speed of flow in the aorta and then use the general form of the equation of continuity to
calculate the number of capillaries as all of the other variables are known.

Solution for (a)

The flow rate is given by or for a cylindrical vessel.

Substituting the known values (converted to units of meters and seconds) gives

Solution for (b)

Using , assigning the subscript 1 to the aorta and 2 to the capillaries, and solving for (the number of
capillaries) gives . Converting all quantities to units of meters and seconds and substituting into the equation

above gives

Discussion

Note that the speed of flow in the capillaries is considerably reduced relative to the speed in the aorta due to the significant
increase in the total cross-sectional area at the capillaries. This low speed is to allow sufficient time for effective exchange to
occur although it is equally important for the flow not to become stationary in order to avoid the possibility of clotting. Does this
large number of capillaries in the body seem reasonable? In active muscle, one finds about 200 capillaries per , or about

per 1 kg of muscle. For 20 kg of muscle, this amounts to about capillaries.
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